The authors thank Dr C. Nagaraju, Department of Chemistry, S. V. University, Tirupathy, for supplying the title compound. One of us (KS) thanks UGC, New Delhi, for a fellowship.

References

Coulter, C. L. (1975). J. Am. Chem. Soc. 97, 4084-4087.
Domenicano, A., Vaciago, A. \& Coulson, C. A. (1975). Acta Cryst. B31, 1630-1641.
Grand, A. \& Robert, J. B. (1978). Acta Cryst. B34, 199-204.
Ismail, R. (1975). German Patent No. 1,543,539. Chem. Abstr. 83, 97419q.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jones, P. G., Edwards, M. R. \& Kirby, A. J. (1986). Acta Cryst. C42, 1368-1369.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nuffel, P. V., Lenstra, A. T. H. \& Geise, H. J. (1981). Acta Cryst. B37, 133-136.
Pastor, S. D., Spivack, J. D., Steinhuebel, L. P. \& Matzura, C. (1983). Phosphorus Sulphur, 15, 253-256.

Reddy, D., Rao, C. N., Reddy, C. V. B., Daniel, D. T., Jasinsky, M. J., Holt, E. M. \& Darell, B. K. (1985). Indian J. Chem. 24B, 481-486.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Wieczorek, M. W., Sheldrick, W. S., KarolakWojciechowska, J., Mikolajczyk, M. \& Ziemnicka, B. (1979). Acta Cryst. B35, 2339-2344.

Acta Cryst. (1989). C45, 808-810

7-Benzyloxy-1,4-dihydro-6-methoxyisocoumarin*

By K. Sivakumar, K. Chinnakali, K. Subramanian and S. Natarajan
Department of Physics, Anna University, Madras 600 025, India

(Received 14 July 1988; accepted 17 November 1988)

Abstract

C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}, M_{r}=284 \cdot 3\), monoclinic, $P 2_{1} / c$, $a=10.822$ (1), $\quad b=13.961$ (1), $c=10.047$ (1) $\AA, \quad \beta$ $=109.57(1)^{\circ}, \quad V=1430.3(2) \AA^{3}, \quad Z=4, \quad D_{m}=$ $1.33(2), D_{x}=1.32 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu$ $=7.3 \mathrm{~cm}^{-1}, F(000)=600, T=294 \mathrm{~K}, R=0.056$ for 2034 observed reflections. The dihydropyran ring is in the boat conformation. The phenyl ring is planar and perpendicular to the plane of the isocoumarin skeleton. The crystal packing is stabilized by van der Waals interactions.

Introduction. Many coumarin and isocoumarin derivatives are of biological importance (Michel \& Durant, 1976; Schmalle, Jarchow, Hausen \& Schulz, 1982). The crystal structure of the title compound has been determined as part of our program on the crystal-structure analysis of these derivatives.

Experimental. Crystals from methanol-chloroform mixture, density measured by flotation. CAD-4 diffractometer, crystal dimensions $0.20 \times 0.20 \times$ 0.15 mm , monochromatized $\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation, cell parameters by least squares for 21 reflections with $25 \leq \theta \leq 35^{\circ}$, intensity data for $0<\theta<60^{\circ}, \omega / 2 \theta$ scan, two standard reflections for every 100 observations, Lp but not absorption, correction; 2242 reflec-

[^0]0108-2701/89/050808-03\$03.00
tions $(h 0 \rightarrow 11, k 0 \rightarrow 14, l-11 \rightarrow 11), 2034$ with $I>3 \sigma(I)$. Direct methods with MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). An E map, computed from the set of phases with the largest combined figure of merit, revealed the structure. Full-matrix least-squares refinement on F; anisotropic temperature factors for C and O atoms, isotropic for H atoms. H-atom positions from difference map. w $=\left[\sigma^{2}\left(F_{o}\right)+0.0315 F_{o}^{2}\right]^{-1}$, final $R=0.056, w R=0.064$ for 2034 observed reflections; $S=1 \cdot 39,(\Delta / \sigma)_{\max }$ $=0.047$, final F map featureless; excursions -0.27 , $0.25 \mathrm{e}^{-3}$, no corrections for secondary extinction; scattering factors as in SHELX76 (Sheldrick, 1976). The geometrical and crystal packing were computed by the program PARST (Nardelli, 1983). Calculations were performed on an IBM 360/44 computer.

Discussion. Final atomic parameters are given in Table $1 . \dagger$ Bond distances and angles are given in Figs. $1(a)$ and $1(b)$ respectively. A thermal-ellipsoid plot of the molecule is shown in Fig. 2.

[^1]

Fig. 1. (a) Atom numbering and bond lengths (\AA) and (b) bond angles $\left({ }^{\circ}\right)$, with e.s.d.'s in parentheses.

Fig. 2. ORTEP drawing (Johnson, 1976) of the title compound. Thermal ellipsoids are at the 50% probability level.

Fig. 3. Molecular packing of the title compound viewed along the a axis.

Table 1. Positional and isotropic thermal parameters with e.s.d.'s in parentheses

$B_{\text {eq }}=\frac{8}{3} \pi^{2}\left(U_{11}+U_{22}+U_{33}\right)$				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
	x	$0.4201(1)$	$0.5592(2)$	$4.98(5)$
$\mathrm{C}(1)$	$0.2331(2)$	$0.5040(1)$	$0.6388(2)$	$5.56(6)$
$\mathrm{O}(2)$	$0.2160(1)$	$0.5306(1)$	$0.7524(2)$	$5.29(5)$
$\mathrm{C}(3)$	$0.3159(2)$	$0.8195(2)$	$7.81(7)$	
$\mathrm{O}(3)$	$0.3040(2)$	$0.5986(1)$	$0.7898(2)$	$5.03(5)$
$\mathrm{C}(4)$	$0.4377(2)$	$0.4700(1)$	$0.8723(2)$	$3.91(5)$
$\mathrm{C}(5)$	$0.4676(2)$	$0.2960(1)$	$0.8498(2)$	$3.47(5)$
$\mathrm{C}(6)$	$0.4280(1)$	$0.2013(1)$	$0.75(5)$	
$\mathrm{C}(7)$	$0.3205(1)$	$0.1757(1)$	$0.7315(2)$	$3.72(5)$
$\mathrm{C}(8)$	$0.2570(2)$	$0.2456(1)$	$0.6341(2)$	$4.09(6)$
$\mathrm{C}(9)$	$0.2983(2)$	$0.3404(1)$	$0.6572(2)$	$4.06(6)$
$\mathrm{C}(10)$	$0.4019(2)$	$0.3651(1)$	$0.7748(2)$	$3.93(5)$
$\mathrm{O}(11)$	$0.2849(1)$	$0.0814(1)$	$0.7246(1)$	$4.44(6)$
$\mathrm{C}(12)$	$0.1692(2)$	$0.0540(1)$	$0.6124(2)$	$5.58(5)$
$\mathrm{C}(13)$	$0.1326(1)$	$-0.0449(1)$	$0.6439(2)$	$4.22(5)$
$\mathrm{C}(14)$	$0.0562(2)$	$-0.0569(2)$	$0.7293(2)$	$5.24(5)$
$\mathrm{C}(15)$	$0.0239(2)$	$-0.1476(2)$	$0.7614(2)$	$6.12(7)$
$\mathrm{C}(16)$	$0.0680(2)$	$-0.2261(2)$	$0.7093(3)$	$5.97(5)$
$\mathrm{C}(17)$	$0.1412(2)$	$-0.2156(1)$	$0.6234(2)$	$5.65(5)$
$\mathrm{C}(18)$	$0.1743(2)$	$-0.1246(2)$	$0.5903(2)$	$4.95(5)$
$\mathrm{O}(19)$	$0.4860(1)$	$0.1274(1)$	$0.9377(1)$	$4.15(5)$
$\mathrm{C}(20)$	$0.5978(2)$	$0.1492(2)$	$1.0567(2)$	$4.83(5)$

Table 2. Torsion angles $\left(^{\circ}\right)$ for the dihydropyran ring

$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	$-42.5(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	$42.6(2)$
$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(1)$	$-0.4(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{O}(2)$	$-42 \cdot 8(2)$
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(3)$	$-1.0(2)$
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	

The dihydropyran ring is in the boat conformation (see Table 2); the asymmetry parameter $C_{s}(\mathrm{C} 1)=1.07$ (Duax, Weeks \& Rohrer, 1976). The C-O distances $C(1)-O(2) 1.465(2)$ and $C(3)-O(2) 1.335(2) \AA$ are asymmetrical. The benzene ring of the isocoumarin skeleton is essentially planar with maximum deviations at $\mathrm{C}(6)$ and $\mathrm{C}(7)[0.009(1)$ and $-0.009(1) \AA$ respectively]. The methoxy group $\mathrm{O}(19)-\mathrm{C}(20)$ lies in
the plane of the benzene ring Itorsion angle $\mathrm{C}(5)-$ $\mathrm{C}(6)-\mathrm{O}(19)-\mathrm{C}(20)=-2.8(2)^{\circ} \mathrm{J}$; this coplanarity results in a close approach between $\mathrm{C}(20)$ and $\mathrm{C}(5)$ [2.805 (3) \AA] which causes expansion of the angle $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(19)\left[124.4(1)^{\circ}\right]$ and contraction of the angle $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{O}(19) \quad\left[115 \cdot 2(1)^{\circ}\right] \quad$ (Sheldrick, Akrigg \& Geddes, 1980; Koetzle \& Williams, 1976). The shortened distance $\mathrm{C}(7)-\mathrm{O}$ (11) 1.367 (2) \AA and angle $\mathrm{C}(7)-\mathrm{O}(11)-\mathrm{C}(12) 117 \cdot 1(1)^{\circ}$ are, perhaps, indicative of some $s p^{2}$ character of the atom $\mathrm{O}(11)$ (Durant, Bufkens, Lefeore, Evrard \& Michel, 1985). The phenyl ring is planar ($\chi^{2}=37 \cdot 4$) and is nearly perpendicular to the least-squares plane of the isocoumarin skeleton [dihedral angle $91.7(5)^{\circ}$].
The molecular packing viewed along a is shown in Fig. 3. The molecules are held in the crystal by van der Waals interactions.

One of the authors (KS) thanks UGC (India) for financial assistance.

References

Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by N. L. Allinger \& E. L. Eliel, pp. 271-383. New York: John Wiley.
Durant, F., Bufkens, F., Lefeore, F., Evrard, G. \& Michel, A. (1985). Acta Cryst. C41, 243-245.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Koetzle, T. F. \& Williams, G. J. B. (1976). J. Am. Chem. Soc. 98, 2074-2078.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). Multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Michel, A. G. \& Durant, F. (1976). Acta Cryst. B32, 321-323.
Nardelle, M. (1983). Comput. Chem. 7, 95-98.
Schmalle, h. W., Jarchow, O. H., Hausen, B. M. \& Schulz, K. H. (1982). Acta Cryst. B38, 2938-2941.

Sheldrick, B., Akrigg, D. \& Geddes, A. J. (1980). Cryst. Struct. Commun. 9, 999-1004.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

SHORT-FORMAT PAPERS

Contributions intended for publication under this heading should follow the format given in the Checklist for Authors [Acta Cryst. (1985). C41, 1-4].

Acta Cryst. (1989). C45, 810-811

Structure of Rubidium Uranyl(VI) Trinitrate

By Allan Zalkin, Lieselotte K. Templeton and David H. Templeton
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA, and Department of Chemistry, University of California, Berkeley, CA 94720, USA

(Received 8 September 1988; accepted 1 November 1988)

Abstract

RbUO}_{2}\left(\mathrm{NO}_{3}\right)_{3}, M_{r}=541.51\), hexagonal, $R \overline{3} c, \quad a=9.384$ (4), $\quad c=18.899$ (6) $\AA, \quad V=$ $1441.3(14) \AA^{3}, \quad Z=6, \quad D_{m}=3.72, \quad D_{x}=$ 3.743 (4) $\mathrm{g} \mathrm{cm}^{-3}, \quad$ Mo $K \dot{\alpha}, \quad \lambda\left(\alpha_{1}\right)=0.70930 \AA, \quad \mu=$ $209.7 \mathrm{~cm}^{-1}, F(000)=1428, T=296 \mathrm{~K}, R=0.014$ for 261 independent reflections with $I>2 \sigma(I)$. The uranyl ion is coordinated in bidentate fashion by three nitrate ions in its equatorial plane. Bond lengths are U $\mathrm{O}=1.746$ (4) (uranyl), 2.474 (3) (nitrate), $\mathrm{N}-\mathrm{O}=$ 1.205 (6) (terminal), 1.268 (4) \AA (bridge). The anomalous-scattering term f^{\prime} for U measured at $0.71 \AA$ is -10.7 (2).

Experimental. Crystals were prepared by slow evaporation of an aqueous solution of rubidium nitrate, uranyl 0108-2701/89/050810-02\$03.00
nitrate and nitric acid. The measured density is quoted from Hoard \& Stroupe (1943). A prismatic crystal $0.038 \times 0.063 \times 0.16 \mathrm{~mm}$ (8 faces, elongated on c) was glued to a glass fiber and mounted on a Picker diffractometer equipped with a graphite monochromator. Cell dimensions were derived from 14 reflections in the range $13<\theta<27^{\circ}$. Integrated intensities were measured by $\theta-2 \theta$ scan for 1295 reflections permitted by the space group in the ranges: θ up to 25° for $h-11$ to $0, k 0$ to $10, l 0$ to 22 and up to 27.5° for $h-12$ to $0, k 0$ to $11, l-24$ to 0 . After analytical correction for absorption $(2.09<A<3.53)$ and adjustments of up to 2% based on variation of two intensity standards, reflections which were equivalent were averaged giving 378 unique ones and 261 with
© 1989 International Union of Crystallography

[^0]: * 7-Benzyloxy-6-methoxy-3-isochromanone.

[^1]: \dagger Lists of the structure factors, anisotropic thermal parameters, H -atom coordinates, distances and angles involving H atoms, torsion angles, least-squares planes and intermolecular distances less than $3.5 \AA$ have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51625 (16 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.
 © 1989 International Union of Crystallography

